Перевод: со всех языков на все языки

со всех языков на все языки

bandwidth of the oscillator

  • 1 bandwidth of the oscillator

    bandwidth of the oscillator ELEK Bandbreite f des Schwingers

    English-german engineering dictionary > bandwidth of the oscillator

  • 2 Bandbreite des Schwingers

    Bandbreite f des Schwingers ELEK bandwidth of the oscillator

    Deutsch-Englisch Wörterbuch Engineering > Bandbreite des Schwingers

  • 3 Pierce, John Robinson

    [br]
    b. 27 March 1910 Des Moines, Iowa, USA
    [br]
    American scientist and communications engineer said to be the "father" of communication satellites.
    [br]
    From his high-school days, Pierce showed an interest in science and in science fiction, writing under the pseudonym of J.J.Coupling. After gaining Bachelor's, Master's and PhD degrees at the California Institute of Technology (CalTech) in Pasadena in 1933, 1934 and 1936, respectively, Pierce joined the Bell Telephone Laboratories in New York City in 1936. There he worked on improvements to the travelling-wave tube, in which the passage of a beam of electrons through a helical transmission line at around 7 per cent of the speed of light was made to provide amplification at 860 MHz. He also devised a new form of electrostatically focused electron-multiplier which formed the basis of a sensitive detector of radiation. However, his main contribution to electronics at this time was the invention of the Pierce electron gun—a method of producing a high-density electron beam. In the Second World War he worked with McNally and Shepherd on the development of a low-voltage reflex klystron oscillator that was applied to military radar equipment.
    In 1952 he became Director of Electronic Research at the Bell Laboratories' establishment, Murray Hill, New Jersey. Within two years he had begun work on the possibility of round-the-world relay of signals by means of communication satellites, an idea anticipated in his early science-fiction writings (and by Arthur C. Clarke in 1945), and in 1955 he published a paper in which he examined various possibilities for communications satellites, including passive and active satellites in synchronous and non-synchronous orbits. In 1960 he used the National Aeronautics and Space Administration 30 m (98 1/2 ft) diameter, aluminium-coated Echo 1 balloon satellite to reflect telephone signals back to earth. The success of this led to the launching in 1962 of the first active relay satellite (Telstar), which weighed 170 lb (77 kg) and contained solar-powered rechargeable batteries, 1,000 transistors and a travelling-wave tube capable of amplifying the signal 10,000 times. With a maximum orbital height of 3,500 miles (5,600 km), this enabled a variety of signals, including full bandwidth television, to be relayed from the USA to large receiving dishes in Europe.
    From 1971 until his "retirement" in 1979, Pierce was Professor of Electrical Engineering at CalTech, after which he became Chief Technologist at the Jet Propulsion Laboratories, also in Pasadena, and Emeritus Professor of Engineering at Stanford University.
    [br]
    Principal Honours and Distinctions
    Institute of Electrical and Electronics Engineers Morris N.Liebmann Memorial Award 1947; Edison Medal 1963; Medal of Honour 1975. Franklin Institute Stuart Ballantine Award 1960. National Medal of Science 1963. Danish Academy of Science Valdemar Poulsen Medal 1963. Marconi Award 1974. National Academy of Engineering Founders Award 1977. Japan Prize 1985. Arthur C.Clarke Award 1987. Honorary DEng Newark College of Engineering 1961. Honorary DSc Northwest University 1961, Yale 1963, Brooklyn Polytechnic Institute 1963. Editor, Proceedings of the Institute of Radio Engineers 1954–5.
    Bibliography
    23 October 1956, US patent no. 2,768,328 (his development of the travelling-wave tube, filed on 5 November 1946).
    1947, with L.M.Field, "Travelling wave tubes", Proceedings of the Institute of Radio
    Engineers 35:108 (describes the pioneering improvements to the travelling-wave tube). 1947, "Theory of the beam-type travelling wave tube", Proceedings of the Institution of
    Radio Engineers 35:111. 1950, Travelling Wave Tubes.
    1956, Electronic Waves and Messages. 1962, Symbols, Signals and Noise.
    1981, An Introduction to Information Theory: Symbols, Signals and Noise: Dover Publications.
    1990, with M.A.Knoll, Signals: Revolution in Electronic Communication: W.H.Freeman.
    KF

    Biographical history of technology > Pierce, John Robinson

  • 4 Hartley, Ralph V.L.

    [br]
    b. 1889 USA
    d. 1 May 1970 Summit, New Jersey, USA
    [br]
    American engineer who made contributions to radio communications.
    [br]
    Hartley obtained his BA in 1909 from the University of Utah, then gained a Rhodes Scholarship to Oxford University, England. After obtaining a further BA and a BSc in 1912 and 1913, respectively, he returned to the USA and took a job with the Western Electric Laboratories of the Bell Telephone Company, where he was in charge of radio-receiver development. In 1915 he invented the Hartley oscillator, analogous to that invented by Colpitts. Subsequently he worked on carrier telephony at Western Electric and then at Bell Laboratories. There he concen-trated on information theory, building on the pioneering work of Nyquist, in 1926 publishing his law that related information capacity, frequency bandwidth and time. Forced to give up work in 1929 due to ill health, he returned to Bell in 1939 as a consultant on transmission problems. During the Second World War he worked on various projects, including the use of servo-mechanisms for radar and fire control, and finally retired in 1950.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical and Electronics Enginners Medal of Honour 1946.
    Bibliography
    29 May 1918, US patent no. 1,592,934 (plate modulator).
    29 September 1919, US patent no. 1,419,562 (balanced modulator or detector). 1922, with T.C.Fry, "Binaural location of complex sounds", Bell Systems Technical
    Journal (November).
    1923, "Relation of carrier and sidebands in radio transmission", Proceedings of the Institute of Radio Engineers 11:34.
    1924, "The transmission unit", Electrical Communications 3:34.
    1926, "Transmission limits of telephone lines", Bell Laboratories Record 1:225. 1928, "Transmission of information", Bell Systems Technical Journal (July).
    1928, "“TU” becomes Decibel", Bell Laboratories Record 7:137.
    1936, "Oscillations in systems with non-linear reactance", Bell System Technology Journal 15: 424.
    Further Reading
    M.D.Fagen (ed.), 1975, A History of Engineering \& Science in the Bell System, Vol. 1: Bell Laboratories.
    KF

    Biographical history of technology > Hartley, Ralph V.L.

См. также в других словарях:

  • Oscillator linewidth — The concept of a linewidth is borrowed from laser spectroscopy. The linewidth of a laser is a measure of its phase noise. The spectrogram of a laser is produced by passing its light through a prism. The spectrogram of the output of a pure noise… …   Wikipedia

  • Microelectromechanical system oscillator — Microelectromechanical system (MEMS) oscillators are timing devices that generate highly stable reference frequencies. These reference frequencies are used to sequence electronic systems, manage data transfer, define radio frequencies, and… …   Wikipedia

  • Variable-frequency oscillator — A variable frequency oscillator (VFO) in electronics is a oscillator with an oscillation frequency that can be electronically changed (hence, variable).cite book |title=The ARRL Handbook for Radio Amateurs, Sixty Eighth Edition |editor=Larry D.… …   Wikipedia

  • Beat frequency oscillator — A beat frequency oscillator or BFO in radio telegraphy, is a dedicated oscillator used to create an audio frequency signal from carrier wave transmissions to make them audible, as they are not broadcast as such. The signal from the BFO is then… …   Wikipedia

  • Vačkář oscillator — A Vackář oscillator is a variation of the split capacitance oscillator model. It is similar to a Colpitts oscillator or a Clapp oscillator in this respect. It differs in that the output level is relatively stable over frequency, and has a wider… …   Wikipedia

  • Buchla 200e — The Buchla 200e is a modular analog synthesizer designed by electronic music pioneer Don Buchla and built by Buchla and Associates. Modules 200e synthesizer platform includes several modules that roughly correspond to the canonical analog… …   Wikipedia

  • radio — /ray dee oh /, n., pl. radios, adj., v., radioed, radioing. n. 1. wireless telegraphy or telephony: speeches broadcast by radio. 2. an apparatus for receiving or transmitting radio broadcasts. 3. a message transmitted by radio. adj. 4. pertaining …   Universalium

  • RLC circuit — A series RLC circuit: a resistor, inductor, and a capacitor An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to… …   Wikipedia

  • Resonance — This article is about resonance in physics. For other uses, see Resonance (disambiguation). Resonant redirects here. For the phonological term, see Sonorant. Increase of amplitude as damping decreases and frequency approaches resonant frequency… …   Wikipedia

  • Phase-locked loop — PLL redirects here. For other uses, see PLL (disambiguation). A phase locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input reference signal. It is an electronic… …   Wikipedia

  • Spectrum analyzer — A spectrum analyzer Spectrum analyzer display A spectrum analyzer measures the magnitude of an input signal versus frequency with …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»